
Podstawy programowania

c.d. Analiza algorytmów.

Projektowanie algorytmów.

Algorytmy iteracyjne

Zad.1. Napisz program obliczający n-tą potęgę zadanej liczby x.

Zad.2. Napisz program, który będzie prosił o hasło dostępu do systemu dopóki nie

otrzyma hasła poprawnego.

• gdy je otrzyma wyświetli napis „Zalogowano!”.

• w przypadku więcej niż 5 prób wypisze komunikat: „Dostęp zablokowany!”

Liczby losowe w C++

• Liczby „losowe” generowane przez komputer wyznaczane są na podstawie

przyjętego algorytmu (wzoru generacyjnego), więc są przewidywalne.

Z tego powodu nazywane są liczbami pseudolosowymi.

• W C++ za generację takich liczb odpowiada m.in. funkcja rand(), która

zwraca liczbę całkowitą z przedziału od 0 do RAND_MAX (wykorzystywany

jest równomierny rozkład prawdopodobieństwa).

• W celu zapewnienia zmienności generowanych liczb pomiędzy

uruchomieniami programu konieczna jest inicjalizacja generatora liczbą

o charakterze zmiennym, do czego dobrze nadaje się aktualny czas (funkcja

time()). Za inicjalizację odpowiada funkcja srand().

• deklaracje funkcji srand() i rand() znajdują się w pliku nagłówkowym cstdlib

Zad.3. Napisz program, który wygeneruje trzy liczby losowe: pierwszą z przedziału

od 0 do 99, drugą z przedziału od 1 do 100, trzecią z przedziału od 1985 do 2014.

Podstawy programowania

Widoczność, modyfikatory i klasy
zmiennych.

Wskaźniki i zastosowanie tablic
statycznych.

Materiał zaczerpnięty z http://edu.pjwstk.edu.pl/wyklady

Zasięg i widoczność zmiennych

• Zasięg (ang. scope) deklaracji to ta część programu, gdzie deklaracja jest

aktywna, czyli nazwa deklarowana może być użyta i odnosi się do tej

właśnie deklaracji.

• Zakres widoczności (ang. visibility) natomiast to ten fragment, w których

nazwa może być użyta bez żadnej kwalifikacji. Zakres widoczności

zadeklarowanej zmiennej może być mniejszy niż zasięg deklaracji na skutek

przesłonięcia.

Zasięg i widoczność zmiennych

• Zmienne lokalne są deklarowane wewnątrz funkcji, a ogólniej bloku

ograniczonego nawiasami klamrowymi. Ich zasięg obejmuje część

programu od miejsca deklaracji do końca tego bloku.

• Czasem życia niestatycznej zmiennej lokalnej jest czas od napotkania jej

definicji do wyjścia z funkcji. W szczególności oznacza to, że kiedy przepływ

sterowania powraca do tej samej funkcji (bloku), zmienne lokalne są

tworzone na nowo i nie „pamiętają” swoich wcześniejszych wartości.

• Takimi zmiennymi są też zmienne deklarowane w części inicjalizacyjnej

pętli for, jak i zmienne deklarowane w części warunkowej

instrukcji if, while, for, switch.

Zasięg i widoczność zmiennych

• Zmienne globalne mogą być przesłonięte. Wówczas nazwa tej zmiennej

w ciele funkcji odnosi się do zmiennej lokalnej. Zmienna globalna istnieje,

ale jest w zakresie funkcji (bloku) niewidoczna.

• Do przesłoniętej zmiennej globalnej możemy odwołać się poprzez operator

zasięgu ' ::' („czterokropek”). Jeśli na przykład przesłonięta została zmienna

o nazwie k, to do globalnej zmiennej o tej nazwie odwołać się można

poprzez nazwę kwalifikowaną ::k.

Zasięg i widoczność zmiennych

 {

 int k = 77;

 cout << "W bloku:" << endl;

 cout << " k: " << k << endl;

 cout << "::k: " << ::k << endl;

 }

 cout << "Po bloku:" << endl;

 cout << " k: " << k << endl;

 cout << "::k: " << ::k << endl;

 }

 int k;

 int main() {

 cout << " k: " << k << endl;

 cout << "::k: " << ::k << endl;

 int k = 10;

 cout << " k: " << k << endl;

 cout << "::k: " << ::k << endl;

 ::k = 1;

 cout << " k: " << k << endl;

 cout << "::k: " << ::k << endl;

 k: 0

 ::k: 0

 k: 10

 ::k: 0

 k: 10

 ::k: 1

 W bloku:

 k: 77

 ::k: 1

 Po bloku:

 k: 10

 ::k: 1

Klasy pamięci i modyfikatory
typow

• Klasa pamięci zmiennej (ang. storage class specifier) określana jest

w deklaracji za pomocą specyfikatora, który jest jednym ze słów

kluczowych extern,register, static.

• Zmienne zewnętrzne deklarowane są ze specyfikatorem extern. Stanowi

ona informację dla kompilatora, że zmienna ta jest lub

będzie zdefiniowana w innym pliku/module. Definicja z kolei może pojawić

się tylko raz, jako definicja zmiennej globalnej bez specyfikatora extern.

• Zmienne rejestrowe deklarowane są ze specyfikatorem register.

Stanowi wskazówkę dla kompilatora, że zmienna będzie na tyle często

używana, że może być opłacalne, zarezerwowanie dla niej rejestru

procesora.

register double x;

 #include <iostream>

 using namespace std;

 extern double x1;

 double x2 = 22;

 void func()

 {

 cout << "func: x1 = " << x1 << endl;

 cout << "func: x2 = " << x2 << endl;

 }

 #include <iostream>

 using namespace std;

 double x1 = 11;

 extern double x2;

 void func();

 int main()

 {

 cout << "main: x1 = " << x1 << endl;

 cout << "main: x2 = " << x2 << endl;

 func();

 }

 PLIK 1 PLIK 2

Klasy pamięci i modyfikatory
typow

• Zmienne statyczne deklarowane są ze specyfikatorem static. Mogą to być

zarówno zmienne globalne, jak i lokalne.

• Zmienna statyczna jest tworzona tylko raz i inicjowana po utworzeniu zerem

odpowiedniego typu. Jeśli jest to zmienna lokalna, to tworzona jest, gdy

przepływ sterowania przechodzi po raz pierwszy przez jej deklarację. Jej czas

życia to okres od utworzenia do końca programu.

• Zmienna statyczna lokalna, nie jest usuwana po wyjściu sterowania z tej funkcji.

 Wywolan fun1: 1

 Wywolan fun1: 2

 Wywolan fun2: 1

 Wywolan fun1: 3

 Wywolan fun2: 2

 Wywolan fun1/2: 5

 int licznik;

 void fun1() {

 static int licznik;

 licznik++; // lokalna

 ::licznik++; // globalna

 cout << "Wywolan fun1: " << licznik << endl;

 }

 void fun2() {

 static int licznik;

 licznik++; // lokalna

 ::licznik++; // globalna

 cout << "Wywolan fun2: " << licznik << endl;

 }

 int main() {

 fun1(); fun1(); fun2(); fun1(); fun2();

 cout << "Wywolan fun1/2: " << licznik << endl;

 }

Klasy pamięci i modyfikatory
typow

• volatile i const są tzw. modyfikatorami typu (ang. type qualifier): nie

wpływają na sposób przydziału pamięci czy linkowania, ale zmieniają typ

deklarowanej zmiennej (choć reprezentacja bitowa pozostaje taka sama).

• Zmienne ulotne deklarowane są z modyfikatorem volatile.

Modyfikator volatile oznacza, że zmienna ta może ulec zmianie „bez

wiedzy” programu.

volatile double x;

Klasy pamięci i modyfikatory
typow

• Zmienną każdego typu, zarówno „zwykłego”, jak i wskaźnikowego, można

ustalić deklarując ją z modyfikatorem typu const przed lub za nazwą typu.

• Wartości stałej (zmiennej ustalonej) nie można zmienić po jej

utworzeniu.

• Jedynym sposobem na nadanie stałej jej wartości jest inicjalizacja podczas

jej definiowania, bezpośrednio w instrukcji deklaracyjnej.

const double PI = 3.1415926536; // TAK

const double PI;

PI = 3.1415926536; // NIE

const double x1 = 2*11;

const double x2 = x1 / 5.0;

const double x3 = sin(x2);

Wskaźniki

• Wartością zmiennej wskaźnikowej jest adres innej zmiennej.

• Deklaracja wskaźnika ma postać:

• Typem wskaźnika px zadeklarowanego jako ' Typ* px;' jest ’Typ*’.

• Definicja wskaźnika ma postać

• Znak ' &' pełni rolę operatora wyłuskania adresu

• Jeśli var jest identyfikatorem zmiennej, to wartością

wyrażenia &var jest adres tej zmiennej.

int *wskaznik; char *px; char **ppx; MojaKlasa* wskaz;

int liczba = 3;

int *wskaznik = &liczba;

Wskaźniki

• Zmienną, której adres jest wartością zmiennej wskaźnikowej, nazywamy

zmienną wskazywaną przez ten wskaźnik.

• Znak ' *' pełni również rolę operatora wyłuskania wartości.

Zad. 1. Napisz program, w którym:

• zadeklarujesz zmienną typu całkowitego,

• zadeklarujesz zmienną wskaźnikową do zmiennej typu całkowitego,

• zmiennej wskaźnikowej przypiszesz adres zmiennej całkowitej,

• wypiszesz:

• wartość zmiennej całkowitej

• wartość zmiennej wskaźnikowej

• wartość zmiennej całkowitej przy pomocy operatora wyłuskiwania wartości

• adres zmiennej całkowitej przy pomoy operatora wyłuskania adresu

• adres zmiennej wskaźnikowej

Wskaźniki

 #include <iostream>

 using namespace std;

 int main() {

 int x;

 int *px;

 px = &x;

 cout << "1. x = " << x << endl;

 cout << "2. px = " << px << endl;

 cout << "3. *px = " << *px << endl;

 cout << "4. &x = " << &x << endl;

 cout << "2. &px = " << &px << endl;

 return 0;

}

Wskaźniki, a zmienne ustalone

• Zmienna zadeklarowana jako stała ma inny typ niż zmienna nieustalona,

więc…

• Przypisanie odwrotne jednak jest legalne. Można do wskaźnika do

ustalonej zmiennej przypisać adres zmiennej nieustalonej. Zapobiega to

przypadkowym zmianom wartości zmiennej wewnątrz funkcji.

#include <iostream>

 using namespace std;

 int fun(const int * pi) {

 //*pi = 2 * (*pi); // NIE !!!

 return *pi;

 }

 int main() {

 int i = 2;

 int res = fun(&i);

 cout << "res = " << res << endl;

 }

 const int i = 25;

 int *pi = &i; // NIE

Tablice statyczne

• Tablice są podstawową złożoną strukturą danych

• Są uporządkowanymi agregatami danych tego samego typu o wspólnym

identyfikatorze (nazwie)

• Do poszczególnych elementów mamy dostęp poprzez ich numer kolejny

w tablicy

• Rozmiar tablicy statycznej jest znany w momencie kompilacji

• Numerowanie elementów zawsze rozpoczyna się od zera

• Jeśli tab jest tablicą, to jej pierwszy element to tab[0],a element

o indeksie k jest oznaczany tab[k]

Zad. 3. Napisz program, który wpisze wszystkie elementy zdefiniowanych powyżej tablic.

const int N = 20;

 int tab1[100],

 tab2[N],

 tab3[] = {1,2,3,4,5},

 tab4[5] = {1,2};

Tablice, typ tablicowy

• Tablice tworzone na stosie jako zmienne lokalne muszą być deklarowane

z rozmiarem, który jest znany w czasie kompilacji.

• Tam gdzie widoczna jest deklaracja tablicy tab, nazwa tab oznacza zmienną

typu tablicowego o określonym rozmiarze.

• Na przykład po int tab[100]; typem tab jest int[100], a więc stuelementowa

tablica liczb całkowitych typu int. Wymiar jest elementem specyfikacji typu:

typy int[6] i int[5] są różnymi typami.

Zad. 4. Napisz program, który sprawdzi prawdziwość ostatniego podpunktu.

Możesz wykorzystać:

sizeof(tab) / sizeof(int)

Tablica czy wskaźnik

• W prawie każdej operacji wykonywanej na zmiennej tab zmienna ta jest

niejawnie konwertowana do typu wskaźnikowego.

• Wartością tab jest wtedy adres pierwszego elementu tablicy, a więc

elementu o indeksie zero.

• Po deklaracji int tab[20]; zmienna tab może być traktowana jako wskaźnik

typu int* const wskazujący na pierwszy element tablicy.

• Modyfikator const znaczy tutaj, że zawartość tablicy może być zmieniana,

ale nie można do tab wpisać adresu innej tablicy.

• Ponieważ tab może być przekonwertowane do wskaźnika wskazującego na

pierwszy element, więc wyrażenie *tab jest niczym innym jak nazwą

pierwszego elementu tablicy. A &tab[0] jest równe wartości wyrażenia tab.

Zad. 5. Napisz program, który sprawdzi prawdziwość ostatniego podpunktu.

Arytmetyka wskaźników

• Do wskaźników można dodawać liczby całkowite.

• Typ wskaźnikowy nie jest jednak typem całkowitym, takie dodawanie jest

zdefiniowane w specjalny sposób.

• Załóżmy, że p jest wskaźnikiem typu Typ*, a zmienna shift jest zmienną

typu całkowitego (ale nie long).

• Wartością wyrażenia p+shift jest wtedy adres zawarty

w zmiennej p powiększony o shift wielokrotności wymiaru zmiennej

typu Typ (czyli sizeof(Typ)).

• Wyrażenie p[i] jest równoważne *(p+i).

Zad. 6. Sprawdzić przedostatni i ostatni punkt.

Użyj:

reinterpret_cast<long>

reinterpret_cast<long>(p+shift) == reinterpret_cast<long>(p) + shift * sizeof(p)

Zad. 7. Napisz program który wypiszę wszystkie elementy tablicy 8-elementowej

korzystając z różnych sposobów odwołania się do poszczególnych elementów tablicy (co

najmniej 3).

Tablice znaków

• Specjalne są tablice i wskaźniki znakowe. Związane jest to z faktem, że

w klasycznym C nie ma typu napisowego, a rolę zmiennych napisowych

pełnią tablice znaków

• Koniec napisu oznaczany jest znakiem ' \0'.

• Znak ten nazywany jest NUL; to znak o kodzie ASCII równym zeru który nie

odpowiada żadnemu znakowi graficznemu

• (nie należy go mylić ze wskaźnikiem pustym NULL).

Zad. 8. Napisz program który porówna rozmiar NUL oraz NULL.

Tablice znaków

 int main() {

 char tab1[] = "Kasia";

 char tab2[] = {'B', 'a', 's', 'i', 'a', '\0'};

 const char *tab3 = "Wisia";

 cout << "Wymiar tab1: " << sizeof(tab1) << endl;

 cout << "Wymiar tab2: " << sizeof(tab2) << endl;

 cout << "Wymiar tab3: " << sizeof(tab3) << endl;

 cout << "Wymiar \'Wisia\': "<< sizeof("Wisia")<< endl;

 tab1[0] = 'C';

 tab2[0] = 'C';

 tab3[0] = 'C';

 cout << "tab1: " << tab1 << endl;

 cout << "tab2: " << tab2 << endl;

 cout << "tab3: " << tab3 << endl;

 return 0;}

Zad. 9. Co wypisze ten program?

Tablice wielowymiarowe

• Tablice w C/C++ mogą być wielowymiarowe, choć ich implementacja nie

jest tak efektywna jak w innych językach programowania (w szczególności

Fortranie).

• Tablica n-wymiarowa jest jednowymiarową tablicą wskaźników do

tablic (n - 1)-wymiarowych

• Deklaracje (tablicy 2x4):

• Definicje:

Zad. 10. Napisz program, który wypełni macierz 3x4 elementami wprowadzanymi z

klawaitury, a następnie je wypisze. Użyj pętli for.

Zad. 11. Napisz program, który w danej tablicy dwuwymiarowej zamieni miejscami dwa

wiersze zdefiniowane przez użytkownika.

int tab[2][4];

 const int dim1 = 2;

 const int dim2 = 4;

 int tab[dim1][dim2];

int tab[2][4] = { 1,2,3,4,5,6,7,8 };

int tab[2][4] = { {1,2,3,4}, {5,6,7,8} };

Typ tablicowy 2.0.

• Jeśli tab[i] jest równoważne *(tab+i), to analogicznie

tab[i][j], to to samo co *(tab[i]+j).

• Zatem tab[i] musi być typu wskaźnikowego – w tym przypadku int*.

• tab[i] wskazuje na początek wiersza o indeksie i.

• tab[i] to *(tab+i) i wyłuskana wartość ma być typu int*, a więc tab musi

być typu „wskaźnik do wskaźnika do int”.

• Zatem taki typ tablicowy odpowiada typowi int**.

• Odpowiada, ale nie jest z nim tożsamy!

int tab[2][4];

Zad. 12. Jak będzie wyglądać odwołanie się do 2 kolumny, 3 wiersza przy pomocy:

• []

• *

w tablicy dwuwymiarowej?

tab[3-1][2-1] => tab[2][1]

((tab+3-1)+2-1) => *(*(tab+2)+1)

Tablice napisów

• Tablica napisów to dwuwymiarowa tablica znaków, np:

• Przeanalizuj kod programu….

char tab[2][70];

Zad. 13. … i napisz program, który wypełni macierz 3x4 elementami wprowadzanymi z

klawaitury, a następnie je wypisze. Używaj arytmetyki wskaźnikowej.

 int main() {

 const char **v;

 const char *t[] = {"abcd", "efghi", "jklmno" };

 v = t;

 cout << "v+2 = " << v+2 << endl;

 cout << "v[2] = " << v[2] << endl;

 cout << "*(v+2) = " << *(v+2) << endl;

 cout << "*(*(t+1)+2) = " << *(*(t+1)+2) << endl;

 cout << "t[1][2] = " << t[1][2] << endl;

 cout << "*(*(v+1)+2) = " << *(*(v+1)+2) << endl;

 cout << "v[1][2] = " << v[1][2] << endl;

 }

 v+2 = 0x7fff364d7080

 v[2] = jklmno

 *(v+2) = jklmno

 ((t+1)+2) = g

 t[1][2] = g

 ((v+1)+2) = g

 v[1][2] = g

